首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1253篇
  免费   326篇
  国内免费   13篇
  2024年   9篇
  2023年   81篇
  2022年   73篇
  2021年   110篇
  2020年   100篇
  2019年   114篇
  2018年   89篇
  2017年   70篇
  2016年   64篇
  2015年   86篇
  2014年   110篇
  2013年   141篇
  2012年   68篇
  2011年   86篇
  2010年   34篇
  2009年   62篇
  2008年   59篇
  2007年   51篇
  2006年   39篇
  2005年   22篇
  2004年   30篇
  2003年   22篇
  2002年   15篇
  2001年   7篇
  2000年   3篇
  1999年   9篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1989年   2篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1973年   1篇
排序方式: 共有1592条查询结果,搜索用时 31 毫秒
31.
Mitochondria play a central role in the integration and execution of a wide variety of apoptotic signals. In the present study, we examined the deleterious effects of burn injury on heart tissue. We explored the effects of vagal nerve stimulation (VNS) on cardiac injury in a murine burn injury model, with a focus on the protective effect of VNS on mitochondrial dysfunction in heart tissue. Mice were subjected to a 30% total body surface area, full‐thickness steam burn followed by right cervical VNS for 10 min. and compared to burn alone. A separate group of mice were treated with the M3‐muscarinic acetylcholine receptor (M3‐AchR) antagonist 4‐DAMP or phosphatidylinositol 3 Kinase (PI3K) inhibitor LY294002 prior to burn and VNS. Heart tissue samples were collected at 6 and 24 hrs after injury to measure changes in apoptotic signalling pathways. Burn injury caused significant cardiac pathological changes, cardiomyocyte apoptosis, mitochondrial swelling and decrease in myocardial ATP content at 6 and 24 hrs after injury. These changes were significantly attenuated by VNS. VNS inhibited release of pro‐apoptotic protein cytochrome C and apoptosis‐inducing factor from mitochondria to cytosol by increasing the expression of Bcl‐2, and the phosphorylation level of Bad (pBad136) and Akt (pAkt308). These protective changes were blocked by 4‐DAMP or LY294002. We demonstrated that VNS protected against burn injury–induced cardiac injury by attenuating mitochondria dysfunction, likely through the M3‐AchR and the PI3K/Akt signalling pathways.  相似文献   
32.
Alterations of endothelial cells and the vasculature play a central role in the pathogenesis of a broad spectrum of the most dreadful of human diseases, as endothelial cells have the key function of participating in the maintenance of patent and functional capillaries. The endothelium is directly involved in peripheral vascular disease, stroke, heart disease, diabetes, insulin resistance, chronic kidney failure, tumor growth, metastasis, venous thrombosis, and severe viral infectious diseases. Dysfunction of the vascular endothelium is thus a hallmark of human diseases. In this review the main endothelial abnormalities found in various human diseases such as cancer, diabetes mellitus, atherosclerosis, and viral infections are addressed.  相似文献   
33.
《Free radical research》2013,47(11):1359-1368
Abstract

Mildly oxidized low density lipoprotein (mLDL) acutely increases the permeability of the vascular endothelium to molecules that would not otherwise cross the barrier. This study has shown that ascorbic acid tightens the permeability barrier in the endothelial barrier in cells, so this work tested whether it might prevent the increase in endothelial permeability due to mLDL. Treatment of EA.hy926 endothelial cells with mLDL decreased intracellular GSH and activated the cells to further oxidize the mLDL. mLDL also increased endothelial permeability over 2 h to both inulin and ascorbate in cells cultured on semi-permeable filters. This effect was blocked by microtubule and microfilament inhibitors, but not by chelation of intracellular calcium. Intracellular ascorbate both prevented and reversed the mLDL-induced increase in endothelial permeability, an effect mimicked by other cell-penetrant antioxidants. These results suggest a role for endothelial cell ascorbate in ameliorating an important facet of endothelial dysfunction caused by mLDL.  相似文献   
34.
Elevated plasma homocysteine is considered to be a risk factor for cardiovascular disease. The mechanisms for this effect are not fully understood but there is some evidence for a role for reactive oxygen species (ROS). This study was conducted to explore the effects of elevated plasma total homocysteine (tHcy) concentration on activity of antioxidant enzymes in the circulation. The study group consisted of 10 patients with inherited defects of homocysteine metabolism, from whom 41 blood samples were collected over a period of six months. Blood samples were also collected from 13 of their obligate heterozygous parents. For data analysis samples were classified as those with plasma tHcy < 20 μM or ≥ 20 μM. The activity of erythrocyte superoxide dismutase (SOD) and plasma glutathione peroxidase (GSHPx) was elevated in samples with plasma tHcy > 20 μM. Moreover, a significant correlation was demonstrated between plasma GSHPx activity, plasma glutathione peroxidase protein and plasma tHcy. In vitro studies confirmed that this observation was not due to a simple chemical enhancement of enzyme activity. Homocysteine protected GSHPx from loss of activity following incubation at 37°C. A similar effect was seen with another thiol-containing amino acid, cysteine. Results suggest that elevated plasma tHcy represents an oxidative stress, resulting in an adaptive increase in activity of antioxidant enzymes in the circulation.  相似文献   
35.
To assess whether pathogenic endothelial dysfunction is involved in acute idiopathic tinnitus we enrolled 44 patients and 25 healthy volunteers. In blood from the internal jugular vein and brachial vein we determined malonaldehyde, 4-hydroxynonenal, mieloperoxidase, glutathione peroxidase, nitric oxide, l-arginine and l-ornitine, thrombomodulin (TM) and von Willebrand factor (vWF) activity during tinnitus and asymptomatic period.

Higher plasma concentrations of oxidative markers and l-arginine, and lower nitric oxide and l-ornitine levels were observed in jugular blood of patients with tinnitus, there being a significant difference between brachial and jugular veins. TM and vWF activity were significantly higher in patients' jugular blood than in brachial blood.

Our results suggest oxidant, TM, vWF activity production are increased and nitric oxide production reduced in brain circulation reflux blood of patients with acute tinnitus. These conditions are able to cause a general cerebro-vascular endothelial dysfunction, which in turn induce a dysfunction of microcirculation in the inner ear.  相似文献   
36.
《Free radical research》2013,47(3-6):169-180
Numerous studies have indirectly, suggested that oxygen-derived free radicals play an important path-ogenetic role in the prolonged depression of contractile function observed in myocardium reperfused after reversible ischemia (myocardial “stunning”). In order to provide direct evidence for the oxy-radical hypothesis of stunning, we administered the spin trap, α-phenyl N-tert-butyl nitrone (PBN), to open-chest dogs undergoing a 15-min coronary artery occlusion followed by reperfusion. Plasma of local coronary venous blood was analyzed by electron paramagnetic resonance (EPR) spectroscopy. EPR signals characteristic of radical adducts of PBN appeared during ischemia and increased dramatically in the first few minutes after reperfusion. After this initial burst, the production of adducts abated but did not cease, persisting up to 3 h after reflow. The production of PBN adducts after reperfusion was inversely related to collateral flow during ischemia. PBN itself enhanced recovery of contractile function. indicating that the radicals trapped may play a pathogenetic role in myocardial stunning. Superoxide dismutase plus catalase attenuated PBN adduct production and, at the same time, improved recovery of contractile function. Antioxidant therapy given 1 min before reperfusion suppressed PBN adduct production and improved contractile recovery; however, the same therapy given 1 min after reperfusion did not suppress early radical production and did not attenuate contractile dysfunction. After i.v. administration, the elimination half-life of PBN was estimated to be approximately 4–5 h. The results demonstrate that 1) free radicals are produced in the stunned myocardium in intact animals; 2) inhibition of free radical production results in improved contractile recovery; and 3) the free radicals important in causing dysfunction are produced in the first few minutes of reperfusion. Taken together, these studies provide cogent evidence supporting the oxy-radical hypothesis of stunning in open-chest dogs. It is now critical to determine whether these results can be reproduced in conscious animal preparations.  相似文献   
37.
From fine‐scale foraging to broad‐scale migration, animal movement is shaped by the distribution of resources. There is mounting evidence, however, that learning and memory also guide movement. Although migratory mammals commonly track resource waves, how resource tracking and memory guide long‐distance migration has not been reconciled. We examined these hypotheses using movement data from four populations of migratory mule deer (n = 91). Spatial memory had an extraordinary influence on migration, affecting movement 2–28 times more strongly than tracking spring green‐up or autumn snow depth. Importantly, with only an ability to track resources, simulated deer were unable to recreate empirical migratory routes. In contrast, simulated deer with memory of empirical routes used those routes and obtained higher foraging benefits. For migratory terrestrial mammals, spatial memory provides knowledge of where seasonal ranges and migratory routes exist, whereas resource tracking determines when to beneficially move within those areas.  相似文献   
38.
Advanced glycation end-products (AGEs) trigger multiple metabolic disorders in the vessel wall that may in turn lead to endothelial dysfunction. The molecular mechanisms by which AGEs generate these effects are not completely understood. Oxidative stress plays a key role in the development of deleterious effects that occur in endothelium during diabetes. Our main objectives were to further understand how AGEs contribute to reactive oxygen species (ROS) overproduction in endothelial cells and to evaluate the protective effect of an antioxidant plant extract. The human endothelial cell line EA.hy926 was treated with native or modified bovine serum albumin (respectively BSA and BSA-AGEs). To monitor free radicals formation, we used H2DCF-DA, dihydroethidium (DHE), DAF-FM-DA and MitoSOX Red dyes. To investigate potential sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial inhibitors were used. The regulation of different types of ROS by the polyphenol-rich extract from the medicinal plant Doratoxylon apetalum was also studied for a therapeutic perspective. BSA-AGEs exhibited not only less antioxidant properties than BSA, but also pro-oxidant effects. The degree of albumin glycoxidation directly influenced oxidative stress through a possible communication between NADPH oxidase and mitochondria. D. apetalum significantly decreased intracellular hydrogen peroxide and superoxide anions mainly detected by H2DCF-DA and DHE respectively. Our results suggest that BSA-AGEs promote a marked oxidative stress mediated at least by NADPH oxidase and mitochondria. D. apetalum plant extract appeared to be an effective antioxidant compound to protect endothelial cells.  相似文献   
39.
The dipeptidyl peptidase 4 inhibitor vildagliptin (VLD), a widely used anti‐diabetic drug, exerts favourable effects on vascular endothelium in diabetes. We determined for the first time the improving effects of VLD on mitochondrial dysfunction in diabetic mice and human umbilical vein endothelial cells (HUVECs) cultured under hyperglycaemic conditions, and further explored the mechanism behind the anti‐diabetic activity. Mitochondrial ROS (mtROS) production was detected by fluorescent microscope and flow cytometry. Mitochondrial DNA damage and ATP synthesis were analysed by real time PCR and ATPlite assay, respectively. Mitochondrial network stained with MitoTracker Red to identify mitochondrial fragmentation was visualized under confocal microscopy. The expression levels of dynamin‐related proteins (Drp1 and Fis1) were determined by immunoblotting. We found that VLD significantly reduced mtROS production and mitochondrial DNA damage, but enhanced ATP synthesis in endothelium under diabetic conditions. Moreover, VLD reduced the expression of Drp1 and Fis1, blocked Drp1 translocation into mitochondria, and blunted mitochondrial fragmentation induced by hyperglycaemia. As a result, mitochondrial dysfunction was alleviated and mitochondrial morphology was restored by VLD. Additionally, VLD promoted the phosphorylation of AMPK and its target acetyl‐CoA carboxylase in the setting of high glucose, and AMPK activation led to a decreased expression and activation of Drp1. In conclusion, VLD improves endothelial mitochondrial dysfunction in diabetes, possibly through inhibiting Drp1‐mediated mitochondrial fission in an AMPK‐dependent manner.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号